RAZONES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE

Aquí te compartiremos todas las formulas, ejemplos, ejercicios resueltos y ejercicios para resolver del tema de Razones Trigonométricas del Ángulo Doble puedes revisar nuestro índice de contenido para que navegues con mas facilidad en este contenido.

Función Seno, Coseno y Tangente del Ángulo Doble

Antes de comenzar a deducir las fórmulas fundamentales del ángulo doble debemos señalar que es un error frecuente, el de considerar la unión del operador trigonométrico con el ángulo como una multiplicación.

Función Seno, Coseno y Tangente del Ángulo Doble

En la deducción de las fórmulas del ángulo doble consideraremos:

x ⇒ ángulo simple

2x ⇒ ángulo doble

A través de las funciones trigonométricas de la suma de dos ángulos podemos deducir las fórmulas del ángulo doble, considerando los ángulos iguales.

Para la función Seno:

Para la función Seno

Para la función Coseno:

Para la función Coseno

La fórmula anterior representa la relación principal del coseno del ángulo doble, pero a través de las identidades podemos encontrar dos alternativas adicionales, así:

Formula en Función Coseno

En función de Coseno

Formula en función Seno

En función de Seno

Para la función Tangente:

Formula para la función Tangente

Relaciones para Degradar Funciones Cuadráticas de Seno y Coseno

Mediante las relaciones trigonométricas podemos obtener el equivalente de una función cuadrática en términos de una función lineal o de primer grado.

Relaciones para degradar funciones cuadráticas de seno y coseno

Para lograr este cometido usaremos las relaciones del coseno del ángulo doble

a. Cos 2x = 1 – 2Sen² x

Despejando la parte cuadrática obtenemos:

Parte Cuadrática

b. Cos 2x = 1 – 2Sen² x – 1

Despejando la expresión cuadrática obtenemos:

Expresión Cuadrática

Observación:

Si bien es cierto que con estas igualdades logramos degradar funciones cuadráticas, podemos aprovechar dichas relaciones para tener un efecto inverso, es decir, a partir de una expresión de primer grado obtener otra de segundo grado.

Funciones Cuadráticas

Las fórmulas a emplear son las mismas anteriores, tomadas en sentido contrario, es decir:

a. De: 2Sen² x = 1 – Cos2x, obtenemos:

Formula 1 Funciones Cuadráticas

b. De: 2Cos² x = 1 + Cos2x, logramos:

Formula 2 Funciones Cuadráticas

Funciones del Ángulo Doble en Términos de la Tangente del Ángulo Simple

Las relaciones fundamentales del ángulo doble se pueden expresar en función de la tangente del ángulo simple. Una forma sencilla de obtener estás fórmulas es a través de la tangente del ángulo doble, la cual se puede llevar a un triángulo rectángulo y de ese modo obtener un triángulo notable.

Así:

Funciones del Ángulo Doble en Términos de la Tangente del Ángulo Simple

Ejemplo Funciones del Ángulo Doble en Términos de la Tangente del Ángulo Simple

Luego, de este triángulo podemos evaluar cada una de las funciones trigonométricas del Ángulo Doble y todas dependerán de la tangente del Ángulo Simple, por lo que deducimos:

Funciones Trigonométricas del Ángulo Doble

Del mismo modo se pueden obtener las funciones restantes (Cotangente, Secante y Cosecante)

Propiedades:

Además de las relaciones fundamentales existen alguna igualdades que nos pueden ayudar en la solución de problemas. Señalemos las más conocidas:

Propiedades Funciones Trigonométricas del Ángulo Doble

Ejemplos de Razones Trigonométrica del Ángulo Doble

Ahora veremos algunos ejemplos de razones trigonométricas de un ángulo doble.

Ejemplo 01:

Si: Sen θ = 0,4. Calcular el valor de:

  1. Sen 2θ
  2. Cos 2θ

Ejemplo 1 de Funciones Trigonométrica del Ángulo DobleSolución:

Del dato:

Solución Ejemplo 1 de Funciones Trigonométrica del Ángulo Doble

Respuesta Ejemplo 1 de Funciones Trigonométrica del Ángulo Doble

Ejemplo 02:

Simplifique la siguiente expresión:

E=Senθ Cosθ Cos2θ Cos4θ

Solución:

Ordenando la expresión:

Respuesta Ejemplo 2 de Funciones Trigonométrica del Ángulo Doble

Ejercicios de Razones Trigonométricas del Ángulo Doble

En esta sección te compartiremos varios problemas de razones trigonométricas del ángulo doble para resolver, en donde cada uno de los ejercicios contiene 5 alternativas de las cuales una de ellas es la respuesta. Estos ejercicios tanto resueltos y para resolver las podrás descargar de forma gratuita en formato WORD y PDF, solo bastara elegir la opción que prefieras.

Ejercicios para Resolver de Razones Trigonométricas del Ángulo Doble

Aquí te compartiremos un documento que contiene 47 problemas de razones trigonométricas del ángulo doble, te invitamos a seleccionar la opción que prefieras:

Opción A – WORD | Opción B – PDF

Razones Trigonométricas del Ángulo Doble para Secundaria

Ahora te compartiremos los enlaces de otro sitios web que comparte fichas de razones trigonométricas del ángulo doble para estudiantes de secundaria, todos estos materiales educativos los podrás descargar en formato PDF.

Fichas para Cuarto Grado de Secundaria

Ahora te brindaremos algunos el enlace de una ficha educativa relacionada con el tema de razones trigonométricas del ángulo doble para 4to grado de secundaria que te compartiremos en seguida:

Fichas para Quinto Grado de Secundaria

Ahora te brindaremos algunos el enlace de una ficha educativa relacionada con el tema de razones trigonométricas del ángulo doble para 5to grado de secundaria que te compartiremos en seguida:

5/5 - (2 votos)

Otros Temas Relacionados

Resolución de Triángulos Oblicuángulos
Ecuaciones Trigonométricas
Transformaciones Trigonométricas
Razones Trigonométricas del Ángulo Mitad
Razones Trigonométricas de Ángulos Compuestos
Identidades Trigonométricas

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Selecciona el contenido que desees: 👇
Ir arriba